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Question 1 (6 points) 
 
Google has built a fault-tolerant, highly-available, recoverable, scalable search application using 
software techniques. 
 
A (3 points): Identify a situation in which the Google search application uses data partitioning to 
achieve scalability. 
 
Indexes and documents each are partitioned into “shards” – 
subsets that contain a certain “range.” 
 
B (3 points): Identify a situation in which the Google search application uses replication to 
achieve reliability. 
 
Each shard is replicated.  If one replica becomes unavailable, 
another can be used. 
 
 
Question 2 (6 points) 
 
Describe two ways in which BigTable has less functionality than a traditional relational database 
system. 
 
It doesn’t support a SQL interface.  Data is semi-structured – 
no type guarantees.  Transactions only apply to a single row. 
 
 
Question 3 (9 points) 
 
A (3 points): What does the IP network protocol accomplish – what does it do?  (One sentence) 
 
IP does best-effort routing of single packets from source to 
destination across multiple heterogeneous networks. 
 
B (3 points): What does the TCP network protocol accomplish – what does it do?  (One 
sentence) 
 
TCP provides reliable delivery of multi-packet messages. 
 
C (3 points): Are TCP packets encapsulated within IP packets, or are IP packets encapsulated 
within TCP packets? 
 
TCP is encapsulated within IP:  {Physical{IP{TCP{payload}}}} 
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Question 4 (6 points) 
 
A Google File System cluster has a single Master, which holds metadata, and a large number of 
Chunkservers, which hold file data.  GFS uses the Chubby coarse-grained lock service to elect a 
new Master in the event of a failure. 
 
A (3 points): How is Chubby used for this purpose?  That is, how do GFS computers determine 
a new Master using Chubby?  (Just a sentence or two.) 
 
Chubby provides atomic file creation and exclusive locking.  The 
various GFS computers vie to create a new file with a designated 
file name, writing their name in the file.  One succeeds, the 
others fail. 
 
B (3 points): Like GFS, Chubby uses replication.  In the event of the failure of the Master in a 
Chubby cell, how is a new Master determined?  (Just a sentence or two.) 
 
Chubby uses the Paxos algorithm. 
 
 
Question 5 (6 points) 
 
You don’t “need” MapReduce (and the components on which it is built, such as GFS and 
Chubby) to build applications on top of a huge cluster of commodity computers.  MapReduce 
eases the task, though, by taking care of a large number of headaches that you would otherwise 
have to write code to deal with yourself.  Identify two different major headaches that MapReduce 
takes care of. 
 
Failure handling.  Load balancing.  Distribution of data among 
workers.  Incremental scalability. 
 
 
Question 6 (4 points) 
 
The major components of a computer are CPU, RAM, network, and disk.  Which component(s) 
are typically the rate-limiting ones in a MapReduce process?  Explain why.  (Just a few 
sentences.) 
 
Network and disk.  MapReduce algorithms are inevitably I/O-
bound. 
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Question 7 (8 points) 
 
Given the following web link graph: 
 

A -> [B, C] 
B -> [A, C] 
C -> [D, B, A] 
D -> [A] 

 
where   X -> [Y, Z]  means page X links to pages Y and Z, show one iteration of the 
PageRank algorithm.  Assume d = .85.  Before iteration 1, initialize each pagerank to 0.15. 
 
Map 

A: 
A -> [B, C] 
B -> 1/2(0.15)  C -> 1/2(0.15) 

B: 
B -> [A, C] 
A -> 1/2(0.15)  C -> 1/2(0.15) 

C: 
C -> [D, B, A] 
D ->  1/3(0.15) B -> 1/3(0.15)  A -> 1/3(0.15) 

D: 
D -> [A] 
A -> 0.15 

 
Reduce 
                       B        C       D 

A:  0.15 + 0.85(0.15/2 + 0.15/3 + 0.15)  =  0.38375 
 
                  A       C 
B:  0.15 + 0.85(0.15/2 + 0.15/3)  =  0.25625 
 
                 A        B 
C:  0.15 + 0.85(0.15/2 + 0.15/2)  =  0.2775 
 
                 C 
D:  0.15 + 0.85(0.05)  =  0.1925
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Question 8 (16 points) 
 
Given these input data structures: 
 

class Foo implements Writable { 
   int fooIdentificationKey; 
   int someFooData; 
   float importantFooMagic; 
 
   void write(DataOutput out) { } // elided 
   void readFields(DataInput in) { } // elided 
} 
 
class Bar implements Writable { 
   int barIdentificationKey; 
   String barString; 
   int relatedFooItem; 
 
   void write(DataOutput out) { } // elided 
   void readFields(DataInput in) { } // elided 
} 

 
A (4 points):  Create a datatype that has the following properties: 
 
- It can represent the contents of either a Foo or a Bar object. 
- A Bar object should be able to be joined with the importantFooMagic field of the 

corresponding Foo object it references. 
- We must be able to distinguish between Bar objects that have been through this join process 

and those that have not. 
 
Show all the fields the object requires; also show the  write()  method body.  (You do not 
need to show the  readFields(),  compareTo(),  equals(),  toString(), or  
hashCode() methods.)   For reference, assume the following interface: 
 

interface DataOutput { 
   public void writeInt(int x); 
   public void writeLong(long x); 
   public void writeFloat(float x); 
   public void writeDouble(double x); 
   public void writeString(String x); 
   public void writeBoolean(bool x); 
   public void writeChar(char x); 
} 
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class FooOrBar implements Writable { 
  enum { FOO, BAR, JOINED_BAR }; 
  int TAG; 
 
  // ident key + TAG is common to both; ok to have 
  // separate fooIdentification, barIdentification 
  int identificationKey; 
 
  int someFooData; 
  float importantFooMagic; // reused by JOINED_BAR 
 
  String barString; 
  int relatedFooItem; 
 
  public void writeFields(DataOutput out) { 
    out.writeInt(TAG); 
    out.writeInt(identificationKey); 
    if (TAG == FOO) { 
      out.writeInt(someFooData); 
      out.writeFloat(importantFooMagic); 
    } else if (TAG == BAR) { 
      out.writeString(barString); 
      out.writeInt(relatedFooItem); 
    } else if (TAG == JOINED_BAR) { 
      out.writeString(barString); 
      out.writeInt(relatedFooItem); 
      out.writeFloat(importantFooMagic); 
    } 
  } 
} 
 
 
(It’s OK to nest Foo and Bar and defer to their writeFields() 
instead of inlining.  You must still include the type 
discrimination tag.)
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B (6 points):  Write the mapper and reducer code which reads in objects of your combined data 
type, and emits them back out; Foo objects should be unchanged, but Bar objects should have 
had the magic data from their related Foo objects joined in. 
 
Assume that Foo-style values (magically) always arrive “first in line” at a reducer ahead of any 
Bar-style values. 
 
Assume that the key arriving at the mapper is irrelevant. 
 
void map(SomeKeyType key, FooOrBar val, OutputCollector out, 
  Reporter r) { 
  if (val.TAG == FOO) { 
    out.collect(val.identificationKey, val); 
  } else if (val.TAG == BAR || val.TAG == JOINED_BAR) { 
    out.collect(val.relatedFooItem, val); 
  } 
} 
 
void reduce(int fooId, Iterator<FooOrBar> vals, 
  OutputCollector out, Reporter r) { 
  float magicFooVal; 
 
  foreach (FooOrBar val : vals) { 
    if (val.TAG == FOO) { 
      magicFooVal = val.importantFooMagic; 
      gotFoo = true; 
      out.collect(fooId, val); 
    } else if (val.TAG == BAR) { 
      val.TAG = JOINED_BAR; 
      // remember, foo always came first; this is ok 
      val.importantFooMagic = magicFooVal; 
      out.collect(fooId, val); 
    } else if (val.TAG == JOINED_BAR) { 
      out.collect(fooId, val); // unchanged 
    } 
  } 
} 
 
C (3 points):  Why is it important for the Foo-style values to arrive at the reducers before the 
Bar-style values? 
 
Otherwise, we would have to buffer the Bars before the joining 
Foo came.  If there were a lot of Bars, then this might overflow 
memory on a single node, so there would be a limit on its 
scalability. 
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D (3 points):  What is the general relationship (the “contract”) between the implementations of 
the  compareTo,  equals,  and  hashCode  methods?  Why is this important for 
MapReduce?  (Just a few sentences.) 
 
x.equals(y)  x.comparesTo(y) == 0  => 

x.hashCode() == y.hashCode() 
 
MapReduce uses hashCode() to select the reduce shard, and 
compareTo() to sort keys.  If compareTo and hashCode don’t work 
sanely, keys may not all arrive at the same reducer in the 
correct order and the reducer won’t get the correct set of 
values together. 
 
 
Question 9 (9 points) 
 
A (6 points): Why is data not lost when a single machine fails in an HDFS cluster?  Describe the 
steps the system takes to ensure this. 
 
HDFS keeps three replicas at all times, so a single failure does 
not cause data loss.  Machines are heart-beat, so the system 
knows when a machine is down.  When this happens, a surviving 
replica is copied to another machine. 
 
B (3 points): Under what conditions could HDFS lose data permanently? 
 
If the wrong three machines failed simultaneously, you could 
lose all replicas of a file.  Also, the NameNode is a single 
point of failure – you could lose the metadata. 
 
 
Question 10 (6 points) 
 
A (3 points): Assuming a Paxos cluster of 7 nodes, at most how many nodes can fail and leave 
the system remaining consistent (functioning correctly)? 
 
No more than 3. 
 
B (3 points): Why can Paxos not support more failures than this? 
 
You need to receive confirmation from more than half of the 
original number of nodes. 
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Question 11 (10 points) 
 
Virtual machine monitors have recently found a “new life” for server consolidation (multiple 
services on a single server). 
 
A (2 points): Identify one key characteristic of VMM’s that makes them particularly suitable for 
this task. 
 
Guest OS’s are isolated from one another.  Deployment of 
applications can be simple and automated. 
 
B (8 points): Trace the steps that occur when an application running on a guest operating system 
in a virtual machine attempts to do a file operation – identify each transition among application, 
guest OS, VMM, and hardware, and identify the mechanism that causes each transition. 
 
- The application executes a privileged instruction in the 

syscall stub. 
- The hardware reflects this up to the VMM, which reflects it up 

to the appropriate guest OS, causing its syscall code to be 
invoked. 

- The guest OS executes a privileged I/O operation on behalf of 
the application. 

- The hardware reflects this up to the VMM, which “simulates” 
the operation on the appropriate virtual disk of the 
appropriate guest OS.  Probably this requires the VMM to 
execute a privileged I/O instruction, which actually causes 
the physical disk to do something because the VMM is executing 
in kernel mode so the privileged instruction executes rather 
than trapping. 

- When the physical I/O completes, the completion interrupt is 
handled in the VMM, which reflects the completion up to the 
guest OS (as a virtual completion interrupt), which can then 
return from the original syscall. 
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Question 12 (14 points) 
 
Implement Variance(X) using MapReduce. 
 
The  Variance  of  n  values of the variable  X  is defined as 
 
            n 

Variance(X)  =  (xi – )
2 

       i=1 
 

where    is the arithmetic mean of the values. 
 
The input to your program is a file including several intermixed datasets.  A dataset is the 
multiple values for a single variable.  Each line in the file consists of a key (the name of the 
variable) and a single value.  The same values may repeat within a dataset.  Thus, the input file 
looks like: 
 

K1   Value1_for_K1 
K1   Value2_for_K1 
K2   Value1_for_K2 
K1   Value3_for_K1 
K2   Value2_for_K2 
Etc. 

 
The output of your program should have a  (Key, Variance)  pair for each key (each 
variable) in the input dataset. 
 
What are the scalability limits, if any, of your solution? 
 
There were three basic approaches to this problem, at different 
points on the scalability and efficiency spectrum, worth 5, 9 
and 14/14 points (as well as a possible super-bonus point) each. 
 
5/14:  Buffering Solution 
 
map(k, v) => emit(k, v)    // identity mapper 
 
reducer(k, iter<v> vals) { 
  let arr = new ArrayList(); 
  sum = 0; 
  count = 0; 
  for (val : vals) { 
    sum = sum + val; 
    count++; 
    arr.add(val.copy()); // buffer iterator input 
  } 
 
  mu = sum / count; 
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  variance = 0; 
  for (val : arr) { 
    variance += (val - mu)^2; 
  } 
 
  emit(k, variance); 
} 
 
Scalability limits:  This program buffers all the values 
associated with a key in RAM; thus a lot of values for the same 
key will crash the reducer. 
 
+1 if you realized that you could do the next solution, but 
didn't actually write the [pseudo]code for it. 
 
-1 if you tried to use the iterator twice. You can't reset the 
iterator in Hadoop. You must use a separate array. 
 
9/14:  Two pass solution 
 
map1(k, v) => emit(k, v); //id mapper 
reduce1(k, iter<v> vals) { 
  sum = 0; 
  count = 0; 
  for (val : vals) { 
    sum += val; 
    count++; 
    emit(k, VAL(val)); 
  } 
  emit(k, MU(sum/count)); 
} 
 
// assume we can perform secondary sorting so MU-tagged elements 
// arrive at reducer before VAL-tagged elements 
map2(k, v) => emit(k, v); //id mapper over output of reduce1 
reduce2(k, iter<v> vals) { 
  variance = 0; 
  for (val : vals) { 
    if isMu(val) { 
      mu = val; 
    } else { 
      // mu element is always first, so mu will be defined here. 
      variance += (val - mu)^2; 
    } 
  } 
 
  emit(k, variance); 
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} 
 
Scalability limits:  None. You just take an extra read-write 
cycle. 
 
14/14:  Streaming variance 
 
Observe: 
sigma^2 == Sum (x_i - mu)^2 ==  
Sum ( x_i^2 - 2x_i mu + mu^2 ) ==  
 
   x_i^2 - 2x_i mu + mu^2 
+  x_j^2 - 2x_j mu + mu^2 
==================================== 
factor vertically into three tallys: 
 
*  (x_i^2) + (x_j^2) + ...      // x_squared 
*  - (2x_i) - (2x_j) + ...    
  == -2 * mu ( x_i + x_j + ...) // x_sum 
* mu * (1 + 1 + ...)            // count 
 
map(k, v) => emit(k, v) // id mapper 
reduce(k, iter<v> vals) { 
  x_sum = 0; 
  x_squared = 0; 
  count = 0; 
  for (val : vals) { 
    count++; 
    x_sum += val; 
    x_squared += val^2; 
  } 
 
  variance = x_squared - (2 * x_sum * mu) + (mu * mu); 
  emit(k, variance); 
} 
 
Scalability limits:  The algorithm has virtually unlimited 
scalability, although we're still using a fair amount of 
bandwidth due to the identity mapper.  To handle this, we would 
need: 
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15/14:  Fully tree-reduced variance 
 
Mapper(k, v) => emit (k, (mu=v, cnt=1, var=0)) 
Combiner(k, iter<v> vals)  emits (k, (mu, count, variance)) for 
subset 
Reducer(k, iter<v> vals) emits final  
  (k, (mu_total, count_total, var_total) 
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